10 research outputs found

    The creation and testing of a mock functional magnetic resonance imaging facility for pain patients

    Get PDF
    Unfamiliarity with functional Magnetic Resonance Imaging (fMRI) facilities leads to unwanted stress-related disturbances in the processing of fMRI data. A mock fMRI facility was developed to increase familiarization among subjects participating in fiviRI studies and to alleviate the time and cost of familiarizing each subject in an actual fMRI facility. A decommissioned Magnetic Resonance Imaging (MRI) unit was remodeled to visually and aurally resemble the Siemens Magnetom Allegra 3 Telsa fMRI machine currently used at the University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey. Instrumentation was developed using LabVIEW software which presented subjects with recreated sounds of the UMDNJ fMRI unit, displayed interactive Pain Descriptor Differential Scales to the subject, collected and displayed electrocardiogram (ECG), blood pressure (BP), and questionnaire data to the operator. In addition to these tasks, the LabVIEW program triggered the Medoc Neuro-Sensory Analyzer to begin producing warm stimuli to patient\u27s forearm, in synchrony with the order of the study. A pilot experiment was conducted to assess if subjects became more habituated to the fMRI environment after two mock fMRI experiences. ECG, BP, and questionnaire data for two subjects in the mock fMRI unit for two sessions were compared. The results support that the subjects were more comfortable, relaxed, and familiar with the experiment and the fMRI environment during the second session

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10−210^{-2}\,M⊙_\odotc2^2 at ∼150\sim 150\,Hz with ∼60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10−21.6 \times 10^{-2}\,Mpc−3^{-3}yr−1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change

    No full text

    References

    No full text

    Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10-2 M⊙c2 at ˜150 Hz with ˜60 ms duration, and high-energy neutrino emission of 1 051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 ×1 0-2 Mpc-3 yr-1 . We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.status: publishe

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Initial Results for LIGO-Virgo and IceCube

    No full text
    corecore